Federated learning (gefedereerd leren) is een begrip binnen de industriële digitalisering en innovatie & toekomsttrends.

Definitie

Federated learning (gefedereerd leren) is een gedistribueerde machine learning aanpak waarbij algoritmes worden getraind op data die verspreid is over meerdere lokaties, zonder dat de data zelf wordt gedeeld. Lokale modellen worden getraind op site-specifieke data, waarna alleen de model parameters worden gecombineerd tot een globaal model.

Kenmerken

  • Data privacy: Ruwe data blijft lokaal, alleen model parameters worden gedeeld
  • Gedistribueerde training: Parallel training op meerdere locaties of fabrieken
  • Model aggregation: Combinatie van lokale modellen tot een globaal gedeeld model
  • Bandwidth efficiency: Minimal data transfer door alleen parameter updates
  • Regulatory compliance: Voldoet aan data sovereignty en privacy regulations
  • Collaborative learning: Profiteert van collective intelligence zonder data exposure
  • Edge computing integration: Lokale training op edge devices
  • Incremental updates: Continuous model improvement zonder data centralization

Toepassing

Multi-plant manufacturing:

  • Quality prediction: Predictive models getraind across multiple plants
  • Process optimization: Shared learning van beste practices zonder IP exposure
  • Defect detection: Computer vision models verbeterd door data van alle locaties
  • Energy optimization: Power consumption patterns learned across facilities

Metaalindustrie federated learning:

  • Tool wear prediction: CNC tool life models improved door meerdere machineshops
  • Weld quality assessment: Visual inspection models trained on diverse welding data
  • Heat treatment optimization: Thermal process models sharing knowledge between furnaces
  • Surface finish prediction: Quality models learning van verschillende machining operations

Supply chain collaboration:

  • Demand forecasting: Shared forecasting models zonder revealing customer data
  • Inventory optimization: Stock level optimization across supply network
  • Supplier quality: Shared quality models voor supplier performance
  • Logistics optimization: Route en delivery optimization across partners

Equipment manufacturer benefits:

  • Machine performance: OEM models improved door customer operational data
  • Preventive maintenance: Service models enhanced door field experience
  • Parameter tuning: Optimal settings learned from diverse applications
  • New product development: Design insights van actual usage patterns

Data privacy en security:

  • IP protection: Manufacturing processes blijven confidential
  • Customer data: End customer information niet gedeeld
  • Competitive advantage: Strategic information remains protected
  • Regulatory compliance: GDPR, CCPA compliance door local data retention

Federated learning architectures:

  • Centralized aggregation: Central server coordinates model updates
  • Peer-to-peer: Direct collaboration tussen participating entities
  • Hierarchical: Multi-level aggregation voor large-scale deployments
  • Blockchain-based: Decentralized coordination en trust mechanisms

Gerelateerde begrippen

Verwante termen:

Verwante concepten:

Bronnen

  • Google AI - Federated Learning research en TensorFlow Federated
  • Microsoft Federated Learning - Azure ML federated capabilities
  • IBM Federated Learning - Enterprise federated learning solutions
  • NVIDIA Clara - Healthcare federated learning platform
  • OpenMined - Open-source privacy-preserving machine learning
  • Flower Framework - Federated learning framework voor research
  • IEEE Standards - Federated learning standardization initiatives

← Terug naar Innovatie & toekomsttrends kaart